Synthesis of (difluoromethyl)phosphonate azasugars designed as inhibitors for glycosyl transferases

J ean-B ernard Behr, C laude M vondo E vina, N ga P hung and G eorges G uillerm*

L aboratoire de Chimie Bioorganique associé au CNRS, U niversité de R eims-C hampagneA rdenne, U FR Sciences BP 103951687 Reims C edex 2, France

Polyhydroxylated pyrrolidines (azasugars) bearing a (difluoromethylene)phosphonate group at the pseudoanomeric position are prepared by nucleophilic opening of arabino-, ribo- and xylo-furanosylamine with diethyl (lithiodifluoromethyl)phosphonate followed by cyclisation of the amino phosphonate products obtained.

A large variety of polyhydroxylated pyrrolidines resembling sugars in the pyranose and furanose configuration have been used with success as transition-state analogue inhibitors of the corresponding glycosidases. ${ }^{1}$ The best results are often obtained with five-membered ring azasugars which closely mimic the flattened shape of the glycosyl cation. ${ }^{\text {1a,2 }}$

Like glycosidases, glycosyl transferases, which catalyse the transfer of a glycosyl residue from nucleotide diphosphate sugars, are believed to proceed in their catalytic reaction via a similar oxocarbenium-like intermediate. ${ }^{3}$ These azasugars have also been used as inhibitors of glycosyl transferases. ${ }^{4}$ These findings, along with several reports suggesting that (1,1difluoromethyl)phosphonates are effective phosphate mimics, ${ }^{5}$ led us to consider that pyrrolidine azasugars (\mathbf{I}) bearing a (1,1 difluoromethylene)phosphonate group at C-2 might be valuable derivatives to serve as initial candidates to mimic an important feature of the transition state involved in glycosyl transferase reactions, or to prepare more elaborated models such as stable azasugar nucleotides (II).

A number of synthetic methods leading to (1,1-difluoroalkyl)phosphonates have been devised; ${ }^{6}$ among these, the use of (diethylphosphinoyl)difluoromethyllithium 1 as a (difluoromethylene)phosphonate building-block is often limited because of its relatively weak nucleophilicity and thermal instability. ${ }^{7}$ To our knowledge, the reactivity of this lithium salt towards aminosugars derived from aldoses has never been studied.

In this communication we report some preliminary results concerning the condensation of 1 with several furanosylamines derived from protected D -arabinose, d -ribose and L -xylose. As outlined in Scheme 1, the acyclic aminophosphonates obtained this way are useful precursors in building the C-2 branched (difluoromethyl)phosphonate azasugar targets, C-5 epimers of the furanosylamines used.

Commercial 2,3,5-tri-O-benzyl-d-arabinose 2 aa and the readily prepared $2,3,5$-tri-0-benzyl-d-ribose ${ }^{8} \mathbf{2 b}$ and -L-xylose $\mathbf{2 c}{ }^{9}$ were converted in quantitative yields by treatment with benzylamine to the corresponding furanosylamines 3a-c as anomeric mixtures ($\alpha: \beta \neq 50: 50$).

Reaction of (diethylphosphinoyl)difluoromethyllithium 1,

Scheme 1 Reagents and conditions: i; $\mathrm{BnNH}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, molecular sieves; ii, $\mathrm{HCF}_{2} \mathrm{P}(\mathrm{O})(\mathrm{OEt})_{2}, \mathrm{LDA}, \mathrm{THF}$-hexane, $-78^{\circ} \mathrm{C}$; iii, M sCl , pyridine
prepared in THF by treatment of diethyl (difluoromethyl)phosphonate with LDA at $-78^{\circ} \mathrm{C}$ according to the method of Obayashi and co-workers, ${ }^{10}$ with glycosamines 3a-c led to the formation of a mixture of the two possible diastereoisomers $\mathbf{4 a}-\mathbf{c}$ and $\mathbf{5 a} \mathbf{a} \mathbf{c}$. These compounds can be separated by column chromatography on silica gel. As shown in Table 1, similar results, i.e. stereochemical outcome of the reaction and combined yields, were obtained in the arabinose, ribose and xylose series. In all cases, the diastereoselection (as determined by ${ }^{19} \mathrm{~F}$ NM R spectroscopy) is moderate. The reaction favours the formation of the threo product, suggesting that only the stereocentre at C-2 is controlling the addition process as previously observed in the reaction of similar aminofuranosides with Grignard reagents. ${ }^{11}$ The configuration at the newly created stereocentre in $\mathbf{4}$ and $\mathbf{5}$ was firmly assigned after their conversion to the respective pyrrolidines 6 and 7 . The nuclear 0 verhauser effect (NOE) on ${ }^{19} \mathrm{~F}$ signals observed by saturation of H-3 in the pyrrolidine phosphonates corresponding to the minor compounds $\mathbf{4 b}$ and $\mathbf{5 a}, \mathbf{c}$ indicated the close proximity of $\mathrm{H}-3$ and the fluorine atoms in the pyrrolidines $\mathbf{6 b}$ and $7 \mathbf{a}, \mathbf{c}$ (Fig. 1) and confirmed the assigned structures. N o NOE was observed for other diastereoisomers.

A ttempts to improve the yields by changing solvent conditions (THF-H M PA), or by using a large excess (5-10 equiv.) of carbanion 1, preformed or generated in situ, were not success-

Table 1 D iastereoselective addition ${ }^{\text {a }}$ of 1 to 3a-c

Entry	Substrate	$(\alpha: \beta)$	Products threo: erythro	Y ield $^{\text {d }}$ (\%)

a Reaction of $\mathrm{LiCF}_{2} \mathrm{P}(\mathrm{O})(\mathrm{OEt})_{2} \mathbf{1}$ (4.9 equiv.) and aminosugars 3a-c (1 equiv.). ${ }^{\mathrm{b}}$ In the presence of ZnBr_{2} (4.9 equiv.). ${ }^{\mathrm{c}} \mathrm{In}$ the presence of CeCl_{3} (4.9 equiv.). ${ }^{\text {d }}$ I solated yield.
ful, probably due to the great lability of 1 . The cerium method recently described by Lequeux and Percy ${ }^{12}$ applied to the xylose derivative 3c (entry 5, Table 1) did not significantly change our results. For the final cyclisation step, each of the difluorophosphonate derivatives $4 \mathrm{a}-\mathrm{c}$ and $5 \mathrm{5a}$ - \mathbf{c} was esterified with methanesulfonyl chloride to give the corresponding methanesulfonates which underwent smooth nucleophilic displacement with the amino group to form the expected azasugars with inversion of configuration at C-5, in good yields (60-98\%). The substantial NOE between H-4 and H-5 in $\mathbf{6 a}, \mathbf{b}$ and $\mathbf{7 a}$, \mathbf{b}, an indication of the cis relationship between these protons, confirmed this inversion.

In conclusion, a new class of azasugars with an unprecedented substitution pattern is described. Work is in progress aimed at synthesizing their corresponding nucleotide analogues for an enzymic evaluation as inhibitors of glycosyl transferases.

Experimental

Typical procedure for the conversion of 3 into 4

To a solution of diisopropylamine ($0.9 \mathrm{ml}, 6.3 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$ in TH F (2 ml) under argon was added n-butyllithium (2.5 ml of a 2.5 m solution in hexane, 6.3 mmol). The resulting solution was stirred for 30 min . To this solution of LDA at $-78^{\circ} \mathrm{C}$ were added dropwise diethyl (1,1 -difluoromethyl) phosphonate (1 ml , 5.3 mmol) and, 10 min later, a cold ($-78^{\circ} \mathrm{C}$) solution of aminosugar 3a ($0.62 \mathrm{~g}, 1.2 \mathrm{mmol}$) in THF (1.5 ml). A fter 1 h at $-78^{\circ} \mathrm{C}$, the reaction was quenched by adding aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ $(15 \mathrm{ml})$ and $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{ml})$. The organic layer was further washed with $\mathrm{NH}_{4} \mathrm{Cl}(3 \times 15 \mathrm{ml})$ and the aqueous phases were extracted once with $20 \mathrm{ml} \mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were dried $\left(\mathrm{M} \mathrm{SSO}_{4}\right)$, filtered and evaporated to give a crude mixture of $\mathbf{4 a}$ and $\mathbf{5 a}$ in a proportion of $85: 15\left({ }^{19} \mathrm{~F}\right.$ NMR determination). Purification by silica gel flash chromatography (EtOA clight petroleum, $30: 70$) gave $\mathbf{4 a}(362 \mathrm{mg}, 42 \%$) and $\mathbf{5 a}$ (83 mg , 10%) as colourless oils; $\mathbf{4 b} \mathbf{- c}$ and $\mathbf{5 b}$ - \mathbf{c} were prepared by a similar procedure.

Cyclisation procedure of 4-5 to 6-7

To a solution of $5 \mathrm{a}(1.0 \mathrm{~g}, 1.43 \mathrm{mmol})$ in pyridine (5 ml) under argon was added methanesulfonyl chloride ($220 \mu \mathrm{l}, 1.7 \mathrm{mmol}$). The resulting solution was stirred overnight at room temperature. Pyridine was evaporated under reduced pressure and the residue was diluted in CHCl_{3}; the solution was washed with water and dried $\left(\mathrm{M} \mathrm{gSO}_{4}\right)$. Evaporation of the solvent and purification of the crude material on a column of silica gel (A cOEtlight petroleum, $30: 70$) gave 7a ($580 \mathrm{mg}, 60 \%$) as a colourless oil.
Selected data: (J values are given in Hz and $[a]_{\mathrm{D}}$ values in 10^{-1} deg $\mathrm{cm}^{2} \mathrm{~g}^{-1}$) 6a: $\delta_{\mathrm{H}}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 250 \mathrm{MHz}\right.$) 7.70-7.05 (20 H , ArH), 5.08 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.4,8.4,3-\mathrm{H}$), 5.00 (1 H of AB, J 12.5 , $\mathrm{CH}_{2} \mathrm{Ph}$), $4.93(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.4,6.6,4-\mathrm{H}), 4.75(1 \mathrm{H}$ of $\mathrm{AB}, \mathrm{J} 12.5$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.61\left(1 \mathrm{H}\right.$ of $\left.\mathrm{AB}, \mathrm{J} 14.7, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.49(1 \mathrm{H}$ of AB, J $\left.12.5, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.44-4.25\left(3 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}\right.$ and 2 H of $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.28$ (1 H of $A B, \mathrm{~J} 12.5, \mathrm{CH}_{2} \mathrm{Ph}$), 4.19 (1 H of $A B, \mathrm{~J} 13.7, \mathrm{CH}_{2} \mathrm{Ph}$), 4.13-3.98 ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), $3.53(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.6,5-\mathrm{H}), 3.52$ (1 H, d, J 7.9, 6-Ha), 3.28 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.9,6-\mathrm{Hb}$), 1.09 ($3 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.3$,

6b

Fig. 1
$\mathrm{CH}_{3} \mathrm{CH}_{2}$), $1.07\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.3, \mathrm{CH}_{3} \mathrm{CH}_{2}\right) ; \delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}, 62.5 \mathrm{MHz}\right)$ 139.4-138.3 (4 C, A ryl), 128.2-126.5 (A ryl), 121.9 (dt, ${ }^{1}{ }^{\mathrm{J}}$ c.f 273, ${ }^{1}{ }_{\text {c.p }} 195, \mathrm{CF}_{2} \mathrm{P}$), $82.5(4-\mathrm{C}), 81.7$ (3-C), 73.7, 73.2, 72.7 (3 $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 65.4$ ($6-\mathrm{C}$), 65.3 ($\mathrm{q},{ }^{2}{ }^{2}{ }_{\mathrm{c} \text { c. }} 20,{ }^{2} \mathrm{~J}_{\mathrm{c} \text { c. }} 20,2-\mathrm{C}$), 64.1 (m, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 57.1(5-\mathrm{C}), 54.1\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 16.2\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; $\delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}, 235.36 \mathrm{M} \mathrm{Hz}, \mathrm{CFCl}_{3}\right)-108.2\left(1 \mathrm{~F}, \mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{P}} 107,{ }^{3} \mathrm{~J}_{\mathrm{F}-\mathrm{H}}\right.$ 10), -108.4 ($1 \mathrm{~F}, \mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{p}} 103,{ }^{3} \mathrm{~J}_{\mathrm{F}-\mathrm{H}} 15$); $\delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}, 101.25\right.$ $\mathrm{M} \mathrm{Hz}, \mathrm{H}_{3} \mathrm{PO}_{4}$) $\left.7.74(\mathrm{brt}) ;[a]_{\mathrm{D}}^{17}-34.3(\mathrm{c} 3.9 \mathrm{in} \mathrm{CHCl})_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{DCI}$, NH_{3}) 680 (${ }^{+}$, 69%), 558 (87), 490 (32).
7a: $\delta_{\mathrm{H}}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 250 \mathrm{M} \mathrm{Hz}\right) 7.55-7.05(20 \mathrm{H}, \mathrm{ArH}), 4.96(1 \mathrm{H}, \mathrm{dd}$, J 2.9, 2.9, 3-H), $4.75\left(1 \mathrm{H}\right.$ of $\left.\mathrm{AB}, \mathrm{J} 11.5, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.67(1 \mathrm{H}$ of $\left.\mathrm{AB}, \mathrm{J} 11.5, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.60\left(1 \mathrm{H}\right.$ of $\left.\mathrm{AB}, \mathrm{J} 11.5, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.40(1 \mathrm{H}$ of $\left.A B, J 11.5, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.35$ (1 H of $\mathrm{AB}, \mathrm{J} 14.5, \mathrm{CH}_{2} \mathrm{Ph}$), 4.27 (2 $\left.\mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.20-4.10\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.16(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2.9$, $5.5,4-\mathrm{H}), 4.08\left(1 \mathrm{H}\right.$ of $\left.\mathrm{AB}, \mathrm{J} 14.5, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.03(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$), 3.98 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.8,6.9,6-\mathrm{Ha}$), 3.78 (1 H , ddd, J 5.5, 5.4, 6.9, $5-\mathrm{H}$), 3.68 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.4,8.8,6-\mathrm{Hb}$), 1.05 ($6 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.3$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$); $\delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}, 62.5 \mathrm{MHz}\right.$) 138.0-137.0 (4 C, Aryl), 129.4-127.0 (A ryl), 120.1 (dt, ${ }^{1}{ }^{1}$ c.F $264,{ }^{1}{ }^{1}$ c.p 206, CF ${ }_{2} \mathrm{P}$), 82.3 (4-C), 81.5 (3-C), 73.1, 71.9, 71.8 (3 C, CH 2 Ph), 69.9 ($6-\mathrm{C}$), 69.7 ($\left.\mathrm{q},{ }^{2} \mathrm{~J}_{\mathrm{c} . \mathrm{F}} 20,{ }^{2}{ }_{\mathrm{J}}^{\mathrm{c} . \mathrm{p}} 20,2-\mathrm{C}\right), 64.4(4-\mathrm{C}), 64.4\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 58.9$ ($\mathrm{NCH}_{2} \mathrm{Ph}$), $16.3\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; $\delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}, 235.36 \mathrm{M} \mathrm{Hz}, \mathrm{CFCl}_{3}\right)$ -114.2 ($1 \mathrm{~F}, \mathrm{ddd},{ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}} 305,{ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{p}} 103,{ }^{3} \mathrm{~J}_{\mathrm{F}-\mathrm{H}} 11$), -116.3 (1 F , ddd, $\left.{ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}} 305,{ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{p}} 107,{ }^{3} \mathrm{~J}_{\mathrm{F}-\mathrm{H}} 19\right)$; $\delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}, 101.25 \mathrm{M} \mathrm{Hz}\right.$, $\mathrm{H}_{3} \mathrm{PO}_{4}$) $7.22(\mathrm{brt}) ;[a]_{0}^{20}-12.3\left(\mathrm{c} 0.86 \mathrm{in} \mathrm{CHCl}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{DCl}$, $\left.\mathrm{NH}_{3}\right) 680\left(\mathrm{M}^{+}, 37 \%\right), 558$ (23), 171 (100) (Calc. for $\mathrm{C}_{38} \mathrm{H}_{44} \mathrm{NO}_{6} \mathrm{~F}_{2} \mathrm{P}: \mathrm{M}^{+}, 679.2874$. Found: $\mathrm{M}, 679.2908$).

6b: $\mathrm{Mp} 57-60^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right) 7.31-7.02(20 \mathrm{H}$, ArH), 4.62 (1 H of AB, J 10.9, CH ${ }_{2} \mathrm{Ph}$), 4.53 (1 H of AB, J 10.9 , $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.45\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.31(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 1.2,4.9,3-\mathrm{H})$, $4.28\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.16\left(1 \mathrm{H}\right.$ of $\left.\mathrm{AB}, \mathrm{J} 13.7, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.15-$ $4.02\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$ and $\left.4-\mathrm{H}\right), 3.99(1 \mathrm{H}$ of $\mathrm{AB}, \mathrm{J} 13.7$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 3.82(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 6.0,10.6,6-\mathrm{Ha}), 3.79(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 3.0$, $10.6,6-\mathrm{Hb}), 3.52-3.45(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ and $5-\mathrm{H}), 1.20,1.18(6 \mathrm{H}$, 2 t , J $6.3, \mathrm{CH}_{2} \mathrm{CH}_{3}$); $\delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}, 62.5 \mathrm{MHz}\right.$) $140.0-138.0(4 \mathrm{C}$, A ryl), 128.4-126.5 (A ryl), 121.0 (dt, ${ }^{1}$ J c-F 262, ${ }^{1}$ (c-p 200, CF ${ }_{2} \mathrm{P}$), 78.7 (4-C), 78.3 (3-C), 73.1, 72.7, 72.3 ($3 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Ph}$), 70.5 (q, ${ }^{2}{ }^{2}$ c.- $20,{ }^{2}{ }^{5}$ c.p $\left.20,2-\mathrm{C}\right), 68.1(6-\mathrm{C}), 64.6\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 60.6$ ($5-\mathrm{C}$), $54.1\left(\mathrm{~N} \mathrm{CH}_{2} \mathrm{Ph}\right), 16.3\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}, 235.36 \mathrm{M} \mathrm{Hz}\right.$, CFCl ${ }_{3}$) -111.3 ($1 \mathrm{~F}, \mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}} 309,{ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{P}} 103$), -115.8 ($1 \mathrm{~F}, \mathrm{ddd}$, ${ }^{2} \int_{F-F} 309,{ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{P}} 103,{ }^{3} \mathrm{~J}_{\mathrm{F}-\mathrm{H}} 23$); $\delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}, 101.25 \mathrm{M} \mathrm{Hz}, \mathrm{H}_{3} \mathrm{PO}_{4}\right)$ $6.83(\mathrm{br} \mathrm{t}) ;[a]_{\mathrm{D}}^{20}+15.1\left(\mathrm{c} 2.3\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \mathrm{m} / \mathrm{z}\left(\mathrm{DCI}, \mathrm{NH}_{3}\right) 680$ ($\mathrm{M}^{+}, 93 \%$), 558 (100), 372 (43) (Calc. for $\mathrm{C}_{38} \mathrm{H}_{44} \mathrm{NO}_{6} \mathrm{~F}_{2} \mathrm{P}: \mathrm{M}^{+}$, 679.2874. Found: $M, 679.2849$)

7b: $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 250 \mathrm{M} \mathrm{Hz}\right) 7.30-7.05(20 \mathrm{H}, \mathrm{ArH}), 4.71(1 \mathrm{H}$ of $\mathrm{AB}, \mathrm{J} 11.4, \mathrm{CH}_{2} \mathrm{Ph}$), 4.56 (1 H of $\mathrm{AB}, \mathrm{J} 14.9, \mathrm{CH}_{2} \mathrm{Ph}$), 4.50 (2 $\left.\mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.29\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.23-4.02\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$ and 1 H of $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.05(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.85(1 \mathrm{H}$ of $\mathrm{AB}, \mathrm{J} 14.9$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 3.79(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.5,9.6,6-\mathrm{Ha}$), $3.70(1 \mathrm{H}, \mathrm{dd}$, J 4.1 , 7.0, 4-H), 3.68 ($1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$), 3.50 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.9,9.6,6-\mathrm{Hb}$), 3.35 (1 H , ddd, J 5.9, 7.0, 5.5, 5-H), 1.25, 1.10 ($6 \mathrm{H}, 2 \mathrm{t}, \mathrm{J} 6.3$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$); $\delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}, 62.5 \mathrm{M} \mathrm{Hz}\right.$) 138.8-137.8 (A ryl), 129.5126.9 (A ryl), 121.0 (dt, ${ }^{1}{ }^{5}$ C.F $268,{ }^{1}{ }^{1}$ c.p $197, C^{2}{ }_{2}$ P), 79.4 (3-C), 78.9 (4-C), 73.2, 73.0, 72.5 ($3 \mathrm{CH}_{2} \mathrm{Ph}$), 71.5 ($6-\mathrm{C}$), 64.8 ($q, 2-\mathrm{C}$), $64.1\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 63.7(5-\mathrm{C}), 59.9\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 16.2(\mathrm{~m}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$); $\delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}, 235.36 \mathrm{M} \mathrm{Hz}, \mathrm{CFCl}_{3}\right)-109.2(1 \mathrm{~F}$, ddd,
 $\left.104,{ }^{3} \mathrm{~J}_{\mathrm{F}-\mathrm{H}} 15\right) ; \delta_{\mathrm{p}}\left(\mathrm{CDCl}_{3}, 101.25 \mathrm{M} \mathrm{Hz}, \mathrm{H}_{3} \mathrm{PO}_{4}\right) 7.3(\mathrm{brt}) ;[a]_{\mathrm{D}}^{20}+2$ (c 1.8 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); m/z (DCI, NH3) $680\left(\mathrm{M}^{+}, 43\right), 558(33), 384$ (100).

6c: $\delta_{\mathrm{H}}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 250 \mathrm{MHz}\right) 7.55-7.05(20 \mathrm{H}, \mathrm{ArH}), 4.69(1 \mathrm{H}$ of $\left.\mathrm{AB}, \mathrm{J} 11.7, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.57\left(1 \mathrm{H}\right.$ of $\left.\mathrm{AB}, \mathrm{J} 11.7, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.52(1 \mathrm{H}$ of $A B, J 11.7, \mathrm{CH}_{2} \mathrm{Ph}$), $4.40\left(1 \mathrm{H}\right.$ of $\mathrm{AB}, \mathrm{J} 13.7, \mathrm{CH}_{2} \mathrm{Ph}$), 4.32 ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$) , $4.30\left(1 \mathrm{H}\right.$ of $\left.\mathrm{AB}, \mathrm{J} 11.7, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.25(1 \mathrm{H}$, $\mathrm{m}, 3-\mathrm{H}), 4.20\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.23-4.00\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$, 1 H of $\mathrm{CH}_{2} \mathrm{Ph}$ and $\left.2-\mathrm{H}\right), 3.75(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.6,8.8,6-\mathrm{Ha}$), 3.58 (1 H, ddd, J 7.6, 6.1, 3.9, 5-H), 3.42 ($1 \mathrm{H}, \mathrm{dd}$, J 8.8, 6.1, $6-\mathrm{Hb}), 1.05,1.00\left(6 \mathrm{H}, 2 \mathrm{t}, \mathrm{J} 6.3, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; $\delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}, 62.5\right.$ M Hz) 139.4-137.9 (4 C, A ryl), 129.8-127.3 (A ryl), 121.5 (dt, ${ }^{1} \mathrm{~J}_{\text {c.- }} 269,{ }^{1} \mathrm{~J}_{\text {c.p }} 209, \mathrm{CF}_{2} \mathrm{P}$), 83.6 and 83.5 (3-C and 4-C), 72.9, 72.8, 72.0 ($3 \mathrm{C}^{2}$ of $\mathrm{CH}_{2} \mathrm{Ph}$), 72.7 ($6-\mathrm{C}$), 65.4 ($5-\mathrm{C}$), 64.7 (q, 2-C), 64.4 ($\mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), $60.0\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 16.4\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; $\delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}, 235.36 \mathrm{M} \mathrm{Hz}, \mathrm{CFCl}_{3}\right)-110.7\left(1 \mathrm{~F}, \mathrm{ddd},{ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{F}} 305\right.$, ${ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{P}} 107,{ }^{3} \mathrm{~J}_{\mathrm{F}-\mathrm{H}} 12$), -114.6 ($1 \mathrm{~F}, \mathrm{ddd},{ }^{2} \mathrm{~J}_{\mathrm{FFF}} 305,{ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{P}} 103,{ }^{3} \mathrm{~J}_{\mathrm{F}-\mathrm{H}}$ 23); $\delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}, 101.25 \mathrm{M} \mathrm{Hz}, \mathrm{H}_{3} \mathrm{PO}_{4}\right.$) $7.35(\mathrm{brt}) ;[a]_{\mathrm{D}}^{20}-12.9$ (c 3.1 in CHCl_{3}); m/z (DCI, N H 3) $680\left(\mathrm{M}^{+}, 94 \%\right)$, 558 (100), 492 (12) (Calc. for $\mathrm{C}_{38} \mathrm{H}_{44} \mathrm{NO}_{6} \mathrm{~F}_{2} \mathrm{P}: \mathrm{M}^{+}, 679.2874$. Found: M , 679.2858).

7c: $\delta_{\mathrm{H}}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 250 \mathrm{M} \mathrm{Hz}\right) 7.45-7.05(20 \mathrm{H}, \mathrm{ArH}), 4.98(1 \mathrm{H}, \mathrm{dd}$, J $1.5,3.0,3-\mathrm{H}), 4.77\left(1 \mathrm{H}\right.$ of $\left.\mathrm{AB}, \mathrm{J} 11.6, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.60(1 \mathrm{H}$ of $\mathrm{AB}, \mathrm{J} 11.6, \mathrm{CH}_{2} \mathrm{Ph}$), 4.51 (1 H of $\mathrm{AB}, \mathrm{J} 14.5, \mathrm{CH}_{2} \mathrm{Ph}$), 4.45 (2 $\left.\mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.25(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 1.5,2.9,4-\mathrm{H}), 4.16(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.15-4.00\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}, 1 \mathrm{H}\right.$ of $\mathrm{CH}_{2} \mathrm{Ph}$ and $\left.2-\mathrm{H}\right)$, 3.80 ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 5.0,6.1,3.0,5-\mathrm{H}$), 3.59 ($1 \mathrm{H}, \mathrm{dd}$, J $6.1,9.8$, $6-\mathrm{H}$ a), $3.54(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.0,9.8,6-\mathrm{H}$ b) $0.98,0.95(6 \mathrm{H}, 2 \mathrm{t}$, J $6.3, \mathrm{CH}_{2} \mathrm{CH}_{3}$); $\delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}, 62.5 \mathrm{M} \mathrm{Hz}\right.$) 139.3-138.2 (4 C, A ryl), 128.2-126.6 (A ryl), 121.5 (dt, ${ }^{1}{ }_{\text {c.p }} 200, \mathrm{CF}_{2} \mathrm{P}$), 84.6 and 84.1 (3-C and 4-C), 73.1, 71.8, 71.3 ($3 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Ph}$), 69.8 ($\mathrm{dt},{ }^{2} \mathrm{~J}_{\mathrm{c} . \mathrm{F}} 20$, ${ }^{2} \mathrm{~J}$ c.p $\left.20,2-\mathrm{C}\right), 68.0(6-\mathrm{C}), 64.5\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 52.6\left(\mathrm{NCH}_{2} \mathrm{Ph}\right)$, $16.3\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; $\delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}, 235.36 \mathrm{M} \mathrm{Hz}, \mathrm{CFCl}_{3}\right)-109.8(1$ F, ddd, $\left.{ }^{2} \int_{F-F} 313,{ }^{2} \int_{F-P} 103,{ }^{3}\right)_{F-H} 7$), $-112.5\left(1 \mathrm{~F} \text {, ddd, }{ }^{2}\right\}_{F-F} 313$, ${ }^{2} \int_{\mathrm{F} \cdot \mathrm{P}} 107,{ }^{3} \mathrm{~J}_{\mathrm{F}-\mathrm{H}} 21$); $\delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}, 101.25 \mathrm{M} \mathrm{Hz}, \mathrm{H}_{3} \mathrm{PO}_{4}\right) 6.72(\mathrm{brt})$; $[a]_{0}^{20}-18.3\left(\mathrm{c} 0.36\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; $\mathrm{m} / \mathrm{z}\left(\mathrm{DCI}, \mathrm{NH}_{3}\right) 680\left(\mathrm{M}^{+}, 100 \%\right)$, 558 (100), 259 (22) (Calc. for $\mathrm{C}_{38} \mathrm{H}_{44} \mathrm{NO}_{6} \mathrm{~F}_{2} \mathrm{P}: \mathrm{M}^{+}, 679.2874$. Found: M, 679.2902).

A cknowledgements

The authors would like to acknowledge the financial support of the CN RS and Europol' A gro Reims.

References

1 (a) M . L. Sinnott, J. Chem. Rev., 1990, 90, 1171; (b) G. Legler, A dv. C arbohydr. Chem. Biochem., 1990, 48, 319; (c) B. Winchester and G. W. Fleet, Glycobiology, 1992, 2, 199; (d) G. C. L ook, C. H. Fotsch and C. H. Wong, Acc. Chem. Res., 1993, 26, 182.
2 Y. F. Wang, D. P. Dumas and C. H. Wong, Tetrahedron Lett., 1993, 34, 403; Y. F. Wang, Y. Takaoka and C. H. Wong, A ngew. Chem., Int. Ed. Engl., 1994, 33, 1242.
3 S. C. K im, A. N. Singh and F. Raushel, Biol. Chem., 1988, 263, 10 151; M. M. Palcic, L. D. Heerze, O. P. Srivastava and O. Hindsgaul, J. Biol. Chem., 1989, 264, 1717.

4 C. H. Wong, D. P. D umas, Y. Ichikawa, K . K oseki, S. J. D anishefsky, B. W. Weston and J. B. Lowe, J. Am. C hem. Soc., 1992, 114, 7321.

5 G. M. Blackburn, D. E. K ent and F. Kolkmann, J. Chem. Soc., Perkin Trans. 1, 1984, 1119.
6 For recent review, M. J. Tozer and T. F. Herpin, Tetrahedron, 1996, 52, 8645 and references cited therein.
7 G. M. Blackburn, D. Brown, S. J. M artin and M. J. Parratt, J. Chem. Soc., Perkin Trans. 1, 1987, 181.
8 I. Augestad and E. Berner, A cta Chem. Scand., 1954, 8, 251; 1956, 10, 914.
9 R . Barker and H. G. F letcher, J. O rg. C hem., 1961, 26, 4605.
10 M. Obayashi, E. Ito, K. M atsui and K. K ondo, Tetrahedron Lett., 1982, 23, 2327.
11 L. Lay, F. Nicotra, A. Paganini, C. Pangrazio and L. Panza, Tetrahedron Lett., 1993, 34, 4555; M. Nagai, J. J. Gaudino and G. S. Wilcox, Synthesis, 1992, 163.

12 T. P. Lequeux and J. M. Percy, Synlett, 1995, 361; J. Chem. Soc., C hem. Commun., 1995, 2111.

Paper 7/00800G
Received 4th February 1997
A ccepted 27th M arch 1997

